Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress.
نویسندگان
چکیده
Recently reported data from mechanical measurements of cultured airway smooth muscle cells show that stiffness of the cytoskeletal matrix is determined by the extent of static contractile stress borne by the cytoskeleton (Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, and Stamenović D. Am J Physiol Cell Physiol 282, C606-C616, 2002). On the other hand, rheological measurements on these cells show that cytoskeletal stiffness changes with frequency of imposed mechanical loading according to a power law (Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas DF, and Fredberg JJ. Phys Rev Lett 87: 148102, 2001). In this study, we examine the possibility that these two empirical observations might be interrelated. We combine previously reported data for contractile stress of human airway smooth muscle cells with new data describing rheological properties of these cells and derive quantitative, mathematically tractable, and experimentally verifiable empirical relationships between contractile stress and indexes of cell rheology. These findings reveal an intriguing role of the contractile stress: although it maintains structural stability of the cell under applied mechanical loads, it may also regulate rheological properties of the cytoskeleton, which are essential for other cell functions.
منابع مشابه
Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
Complex rheology of airway smooth muscle cells and its dynamic response during contractile stimulation involves many molecular processes, foremost of which are actomyosin cross-bridge cycling and actin polymerization. With an atomic force microscope, we tracked the spatial and temporal variations of the viscoelastic properties of cultured airway smooth muscle cells. Elasticity mapping identifie...
متن کاملCellular Responses to Mechanical Stress Selected Contribution: Mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells
Smith, Paul G., Chaity Roy, Steven Fisher, Qi-Quan Huang, and Frank Brozovich. Selected Contribution: Mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells. J Appl Physiol 89: 2092–2098, 2000.—Cultured airway smooth muscle cells subjected to cyclic deformational strain have increased cell content of myosin light chain kinase (MLCK) and myosi...
متن کاملHistorical perspective on airway smooth muscle: the saga of a frustrated cell.
Despite the lack of a clearly defined physiological function, airway smooth muscle receives substantial attention because of its involvement in the pathogenesis of asthma. Recent investigations have turned to the ways in which the muscle is influenced by its dynamic microenvironment. Ordinarily, airway smooth muscle presents little problem, even when maximally activated, because unending mechan...
متن کاملThe contractile apparatus and mechanical properties of airway smooth muscle.
The functional properties of airway smooth muscle are fundamental to the properties of the airways in vivo. However, many of the distinctive characteristics of smooth muscle are not easily accounted for on the basis of molecular models developed to account for the properties of striated muscles. The specialized ultrastructural features and regulatory mechanisms present in smooth muscle are like...
متن کاملPreventive effects of ipratropium and salbutamol against insulin induced tracheal smooth muscle contraction in guinea pig model
Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and ipratropium against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2004